
Breaking Thunderbolt Protocol Security:

Vulnerability Report

Björn Ruytenberg
Eindhoven University of Technology

bjorn@bjornweb.nl

April 17, 2020

Changelog

Date Description
Feb 10, 2020 First released version.
Mar 8, 2020 Added vulnerability 6 and exploitation scenarios 3.3.1–3.3.3.
Apr 17, 2020 Added vulnerability 7 and exploitation scenarios 3.4.1, 3.4.2.

Abstract

Thunderbolt is a proprietary I/O protocol promoted by Intel and included in a
number of laptops, desktops, and other systems. As an external interconnect,
it allows exposing the system’s internal PCI Express (PCIe) domain to external
devices. This enables high-bandwidth, low-latency use cases, such as external
graphics cards. Being PCIe-based, Thunderbolt devices possess Direct Memory
Access-enabled I/O, allowing complete access to the state of a PC and the ability
to read and write all of system memory.

In recent years, the former characteristic has prompted research into attacks
collectively known as evil maid, which require an attacker-controlled device and
only seconds of physical access to the computer. Industry response has been two-
fold. First, hardware and OS vendors incorporated support for DMA remapping
using Input-Output Memory Management Units (IOMMUs), which imposes
memory protections on DMA. However, following various implementation issues,
OS vendors classified DMA remapping as an optional countermeasure requiring
driver support. Second, revised Thunderbolt controllers introduced a software-
based access control measure enabling users to authorize trusted devices only.
As a result, unidentified devices should be barred from system access without
prior user interaction.

1



In the context of Thunderbolt, studies have primarily focused on employing
DMA and IOMMU attacks on the PCIe level. We therefore investigate the feasi-
bility of breaking Thunderbolt protocol security, by analyzing the protocol and
its software and hardware stack, as well as associated PCIe-based technology.

In our study, we have found and experimentally confirmed multiple vulner-
abilities that break all primary Thunderbolt 3 security claims. Based on our
on-going research, in this report, we disclose the following vulnerabilities: (i) in-
adequate firmware verification schemes, (ii) weak device authentication scheme,
(iii) use of unauthenticated device metadata, (iv) backwards compatibility with
legacy protocol versions, (v) use of unauthenticated controller configurations,
(vi) SPI flash interface deficiencies, and (vii) no Thunderbolt security on Boot
Camp. Finally, we present nine practical exploitation scenarios. Given an “evil
maid” threat model and varying Security Levels, we demonstrate the ability
to create arbitrary Thunderbolt device identities, clone user-authorized Thun-
derbolt devices, and finally obtain PCIe connectivity to perform DMA attacks.
In addition, we show unauthenticated overriding of Security Level configura-
tions, including the ability to disable Thunderbolt security entirely, and restor-
ing Thunderbolt connectivity if the system is restricted to exclusively passing
through USB and/or DisplayPort. We conclude this report by demonstrating
the ability to permanently disable Thunderbolt security and block all future
firmware updates.

Exploitation Scenario Applicable Vulnerabilities CVSS Score1

3.1.1 1–4 7.7
3.1.2 1–4 7.7
3.1.3 1–4 7.7
3.2.1 5 7.7
3.3.1 5–6 7.7
3.3.2 5–6 7.7
3.3.3 5–6 7.7
3.4.1 2–3 -
3.4.2 1–4, 7 7.7

Table 1: Exploitation scenarios corresponding to the disclosed vulnerabilities.

1 Introduction

In Thunderbolt, devices authenticate to the system using a collection of strings
and numerical identifiers. Figure 1 shows device metadata enumerated on
MacOS, Linux and Windows. As can be seen, device identification informa-
tion includes [11]:

• Device ID. A 16-bit device identifier.
1CVSS v3.1. Calculated using AV:P/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H.

2



• Device name. An ASCII string representing the device name.

• Vendor ID. A 16-bit vendor identifier.

• Vendor name. An ASCII string representing the vendor name.

• Unique ID / UUID. A 64-bit numerical string uniquely identifying the
device.

Figure 1: Thunderbolt device metadata enumeration.

Several studies have shown Thunderbolt to be a viable entry point in DMA
attacks [3][6][7]. In response, Intel has introduced various countermeasures. A
whitepaper on Thunderbolt security [4] details their threat model, and outlines
how new security measures aim to prevent the former attacks given this model.
In this section, we briefly summarize its scope.

In the whitepaper, Intel recognizes that Thunderbolt “(..) potentially al-
lows access to system memory from a physical IO device utilizing the PCIe
protocol”. Countermeasures introduced in Thunderbolt therefore “(..) prevent
unauthorized Thunderbolt PCIe-based devices from connecting without user au-
thorization”. To this end, Intel introduces software-based device authorization,
using a user-configurable multi-step system referred to as Security Levels (SL).
The whitepaper proceeds by defining the following Security Levels:

• SL0 - None. Similar to Thunderbolt 1, all attached devices are autho-
rized without user interaction.

• SL1 - User. Access control based on device UUID. This is the default
setting for all systems supporting Thunderbolt 2 onward.

• SL2 - Secure. Access control based on device UUID and challenge-
response device authentication.

• SL3 - No PCIe tunneling. Switches the PHY to either DP-only, USB-
only or mixed USB/DisplayPort mode.

To further strengthen device authentication, the secure security level provides
“cryptographic authentication of connection[s] to help prevent a peripheral de-
vice to be spoofed to masquerade as an approved device to the user” [4].

As an extension to Security Levels, pre-boot protection is defined to ensure
devices “(..) are allowed to be enumerated and connected at boot time only if

3



they have been approved by the user before” [4]. Specifically, it is intended to
prevent malicious devices from compromising sensitive UEFI data structures,
including Security Levels configuration. This protection is disabled for devices
that have been authorized by the user.

2 Vulnerability details

2.1 Overview

In our study, we have found and experimentally confirmed multiple vulnerabil-
ities related to Thunderbolt protocol security. In this report, we disclose the
following vulnerabilities:

1. Inadequate firmware verification schemes. Thunderbolt host and
device controllers operate using updatable firmware stored in its SPI flash.
Using this feature, Thunderbolt hardware vendors occasionally provide
firmware updates online to address product issues post-release. To ensure
firmware authenticity, upon writing the image to the flash, Thunderbolt
controllers verify the firmware’s embedded signature against Intel’s public
key stored in silicon. However, we have found authenticity is not verified at
boot time, upon connecting the device, or at any later point. During our
experiments, using a SPI programmer, we have written arbitrary, unsigned
firmware directly onto the SPI flash. Subsequently, we have been able to
verify Thunderbolt controller operation using our modified firmware.

2. Weak device authentication scheme. As noted in Section 1, device
identification comprises several strings and numerical identifiers. However,
we have found none of the identifiers are linked to the Thunderbolt PHY
or one another, cryptographically or otherwise.

3. Use of unauthenticated device metadata. Thunderbolt controllers
store device metadata in a firmware section referred to as Device ROM
(DROM). We have found that the DROM is not cryptographically veri-
fied. Following from the first issue, this vulnerability enables constructing
forged Thunderbolt device identities. In addition, when combined with
the second issue, forged identities may partially or fully comprise arbi-
trary data. Figure 2 demonstrates a device passing authentication while
presenting a forged DROM to the host.

4. Backwards compatibility. Thunderbolt 3 host controllers support Thun-
derbolt 2 device connectivity, irrespective of Security Levels. Such back-
wards compatibility subjects Thunderbolt 3-equipped systems to vulner-
abilities introduced by Thunderbolt 2 hardware.

5. Use of unauthenticated controller configurations. In UEFI, users
may choose to employ a Security Level different to the default value (SL1)
as listed in Section 1. In storing Security Level state, we have determined

4



that Thunderbolt employs two state machines, with one instance being
present in UEFI, and another residing in host controller firmware. How-
ever, we have found firmware configuration authenticity is not verified at
boot time, upon resuming from sleep, or at any later point. In addition, we
have found these states machines may be subjected to desynchronization,
with controller firmware overriding UEFI state without being reflected
in the latter. As such, this vulnerability subjects the Thunderbolt host
controller to unauthenticated, covert overriding of Security Levels config-
uration.

6. SPI flash interface deficiencies. As noted before, Thunderbolt sys-
tems rely on SPI flash to store controller firmware (vulnerability 1) and
maintain their Security Level state (vulnerability 5). In our study, we
have found Thunderbolt controllers lack handling hardware error condi-
tions when interacting with flash devices. Specifically, we have determined
enabling flash write protection (i) prevents changing the Security Level
configuration in UEFI, again without being reflected in the latter, and (ii)
prevents controller firmware from being updated, without such failures be-
ing reflected in Thunderbolt firmware update applications. As such, when
combined with the fifth issue, this vulnerability allows to covertly, and
permanently, disable Thunderbolt security and block all future firmware
updates.

7. No Thunderbolt security on Boot Camp. Apple supports running
Windows on Mac systems using the Boot Camp utility [2]. Aside from
Windows, this utility may also be used to install Linux. When running
either operating system, Mac UEFI disables all Thunderbolt security by
employing the Security Level “None” (SL0). As such, this vulnerability
subjects the Mac system to trivial Thunderbolt-based DMA attacks.

5



Figure 2: A Thunderbolt device presenting a forged DROM.

2.2 Affected configurations

2.2.1 PC systems

• Hardware: All laptop and desktop systems equipped with a Thunderbolt
2 and/or Thunderbolt 3 family host controller employing Security Levels2.

• Operating systems:

Microsoft Windows: 7, 8.1, and all Windows 10 builds currently available.
As of writing, this includes the latest 1909 release.

Linux: All kernel releases from 4.13 onward [11][12]. Previous versions,
starting from 3.17, are trivially affected; these provide Thunderbolt sup-
port without implementing Security Levels [9], and hence require SL0 to
operate.

2.2.2 Apple Mac systems

• Hardware: All Apple Mac systems equipped with a Thunderbolt 2 and/or
Thunderbolt 3 family host controller.

• Operating systems:

Microsoft Windows (Boot Camp): As PC systems.

Linux (Boot Camp): As PC systems.

2 Systems supporting Kernel DMA Protection [8] in place of Security Levels, released from
2019 onward, are currently subject to further investigation.

6



MacOS: Regarding Thunderbolt security, MacOS employs (i) an Apple-
curated whitelist in place of Security Levels [7], and (ii) IOMMU virtual-
ization when hardware and driver support is available [1][3]. Vulnerabili-
ties 2–3 enable bypassing the first protection measure, and fully compro-
mising authenticity of Thunderbolt device metadata in MacOS “System
Information”. However, the second protection measure remains function-
ing and hence prevents any further impact on victim system security via
DMA. The system becomes vulnerable to attacks similar to BadUSB [10].
Therefore, MacOS is partially affected.

Vulnerability ID Affects MacOS Affects Windows Affects Linux
1 No Yes Yes
2 Partially Yes Yes
3 Partially Yes Yes
4 No Yes Yes
5 No No No
6 No No No
7 No Yes Yes

Table 2: Vulnerabilities affecting Apple Mac systems when running MacOS, as
well as Windows and Linux when using Boot Camp.

2.3 Partial mitigations for PC systems

As vulnerabilities 5 and 6 enable (permanent) unauthenticated overriding of
Security Levels configuration, it is not sufficient to modify the Thunderbolt
host controller Security Level to disable PCIe tunneling (SL3). Until a fix has
been made available, we recommend disabling all Thunderbolt 2 and 3 host
controllers in UEFI (BIOS) entirely.

Once a fix has been issued for the former vulnerabilities, we strongly encourage
users to follow the instructions below to mitigate vulnerabilities 1 to 4.

On Thunderbolt 3 systems, we recommend changing the Thunderbolt controller
Security Level to disable PCIe tunneling (SL3). Affected users may choose one
of the following options in UEFI:

• USB passthrough mode. The Thunderbolt port operates as a USB 3.1
Type C interface, that is, without DisplayPort (DP) alt-mode support.

• DisplayPort only mode. In this mode, the Thunderbolt 3 port behaves
identical to the video-only DP interface.

• Mixed USB/DisplayPort mode. Enables support for mixed mode
devices, such as USB Type C hubs with DisplayPort sinks. In this mode,
the Thunderbolt 3 port operates as a USB 3.1 Type C interface supporting
DP alt-mode.

7



Similarly, on Thunderbolt 2 systems, we recommend changing the Thunderbolt
Security Level to “DisplayPort only” (SL3).

Alternatively, users willing to permanently disable PCIe tunneling may use vul-
nerability 6 to render SL3 permanent.

Please note that disabling PCIe tunneling will prevent native Thunderbolt de-
vices from operating. Additionally, we would like to emphasize the former sug-
gestions are provided exclusively under the assumption that Intel’s Thunderbolt
Security Levels specifications are accurate.

2.4 Partial mitigations for Apple Mac systems

Vulnerability 7 disables all Thunderbolt security on Apple Mac systems when
running Windows or Linux using the Boot Camp utility. Therefore, users are
strongly encouraged to avoid using either operating system until a fix has been
issued to address this vulnerability.

3 Exploitation

This section outlines a number of exemplary scenarios in which the identified
vulnerabilities can be exploited. Given varying real-world threat models, we
present four categories of exploitation scenarios. For vulnerabilities 1 to 4, the
first category demonstrates cloning the identity of a user-authorized Thunder-
bolt 3 device to an arbitrary, attacker-controlled device. For vulnerability 5,
the second category demonstrates unauthenticated overriding of Security Levels
configuration. After completing a procedure from either category, the attacker-
controlled device will obtain DMA access to the victim system without prior
user authorization. For vulnerability 6, the third category outlines three meth-
ods to render overriding Security Levels permanent, as well as block all future
firmware updates. Finally, for vulnerabilities 1–3 and 7, the fourth category
demonstrates trivially obtaining DMA access to an Apple Mac victim system
running Windows or Linux. It also demonstrates their limited impact on Ma-
cOS. We define the following keywords:

SPI programmer A SPI programmer that can be used to interface with a
Thunderbolt controller’s SPI flash.

Victim system The victim’s system equipped with a Thunderbolt 3 interface.

Victim device A Thunderbolt 3 device authorized by the user to connect to
the victim system.

Attacker device For scenarios 3.1.1–3.1.3, an arbitrary Thunderbolt 2 device
which will spoof the victim device’s identity. For scenarios 3.2.1-3.4.2, an
arbitrary Thunderbolt 2 or 3 device.

8



Attacker system An attacker-controlled system equipped with a Thunderbolt
3 interface.

Tcfp Thunderbolt 3 Controller Firmware Patcher. A Python-based script we
have developed that enables parsing and patching host controller firmware
images.

SPIblock A Python-based script we have developed that enables configuring
on-flash write protection.

3.1 Exploitation scenarios for vulnerabilities 1–4

3.1.1 Cloning victim devices with physical device access (SL1)

Threat model

We assume an “evil maid” threat model, in which the attacker has physical
access to a victim device as well as the victim system. The system is in a locked
(S0) or sleep state (S3). The Thunderbolt controller is set to employ the default
Security Level “User”.

Procedure

1. Connect the victim device to the attacker system. On the attacker system,
using e.g. tbtadm on Linux, obtain the UUID of the victim device.

2. Disassemble the attacker device enclosure. Obtain the firmware image
from the Thunderbolt controller’s SPI flash of the attacker device.

3. Locate the DROM section by searching for the string DROM in the attacker
device firmware image. Figure 6 depicts the DROM data structure. Using
the figure as a reference, locate the appropriate offset and replicate the
victim device UUID.

4. Compute uid crc8 and replicate the value at the appropriate offset.

5. Write the image to the attacker device SPI flash.

Verification

1. Connect the attacker device to the victim system. Observe that the vic-
tim system identifies the attacker device as being the victim device, and
enables PCIe tunneling as a result. Figure 3 and Figure 4 demonstrate an
example scenario, cloning the device identity of a NetStor NVMe enclosure
to a CalDigit Thunderbolt dock.

9



3.1.2 Cloning victim devices without physical device access (SL1)

Threat model

We assume an “evil maid” threat model, in which the attacker exclusively has
access to the victim system. More specifically, the attacker is not in possession
of any victim devices. Furthermore, we assume the system is in a sleep state
(S3), while the Thunderbolt controller is set to employ the default Security
Level “User”.

Procedure

1. Disassemble the case of the victim system. Obtain the firmware image
from the Thunderbolt host controller’s SPI flash.

2. Locate the Thunderbolt device ACL section in the firmware image be-
tween the offsets 0x0000–0x2000. The exact location will depend on the
controller model, firmware revision, and the number of authorized devices.
The indicated region primarily stores the ACL.

3. In the ACL data structure, identify a target victim device’s UUID.

4. Disassemble the attacker device enclosure. Obtain the firmware image
from the Thunderbolt controller’s SPI flash of the attacker device.

5. Locate the DROM section by searching for the string DROM in the attacker
device firmware image. Figure 6 depicts the DROM data structure. Using
the figure as a reference, locate the appropriate offset and replicate the
victim device UUID.

6. Compute uid crc8 and replicate the value at the appropriate offset.

7. Write the image to the attacker device SPI flash.

Verification

1. Connect the attacker device to the victim system. Observe that the vic-
tim system identifies the attacker device as being the victim device, and
enables PCIe tunneling as a result.

3.1.3 Cloning victim device including challenge-response keys (SL2)

Threat model

We assume an “evil maid” threat model, in which the attacker has physical
access to a victim device as well as the victim system. The system is in a
locked (S0) or sleep state (S3). The Thunderbolt controller is set to employ the
Security Level “Secure”.

10



Procedure

1. Connect the victim device to the attacker system. On the attacker system,
using e.g. tbtadm on Linux, obtain the UUID of the victim device.

2. Disassemble the victim device enclosure. Obtain the firmware image from
the Thunderbolt controller’s SPI flash of the victim device.

3. Locate the challenge-response key section in the firmware image between
the offsets 0x1910–0x2000. The exact location will depend on the con-
troller model, firmware revision, and the number of previously connected
hosts. The indicated region exclusively stores the challenge-response keys
in a dictionary data structure, comprising (i) the victim host controller
UUID, and (ii) the corresponding challenge-response key.

4. Obtain the firmware image from the Thunderbolt controller’s SPI flash of
the attacker device.

5. In the attacker device firmware image, replicate the content from step 3
at the first available host–key slot between the offsets 0x1910–0x2000.

6. Locate the DROM section in the attacker device firmware image by searching
for the string DROM. Figure 6 depicts the DROM data structure. Using the
figure as a reference, locate the appropriate offset and replicate the victim
device UUID.

7. Compute uid crc8 and store the value at the appropriate offset.

8. Write the image to the attacker device SPI flash.

Verification

1. Connect the attacker device to the victim system. Observe that the vic-
tim system identifies the attacker device as being the victim device, and
enables PCIe tunneling as a result. Figure 5 illustrates spoofing the de-
vice identity of an IOGEAR eSATA-to-Thunderbolt dongle on a CalDigit
Thunderbolt dock.

3.2 Exploitation scenario for vulnerability 5

3.2.1 Disabling Thunderbolt security (SL1/SL2), or restoring Thun-
derbolt connectivity when disabled (SL3)

Threat model

We assume an “evil maid” threat model, in which the attacker exclusively has
access to the victim system. More specifically, the attacker is not in possession
of any victim devices. Furthermore, we assume the system is in a sleep state
(S3), while the Thunderbolt controller is set to employ either the Security Level
“User”, “Secure” or “No PCIe tunneling”.

11



Procedure

1. Disassemble the case of the victim system. Obtain the firmware image
from the Thunderbolt host controller’s SPI flash.

2. On the attacker system, open a terminal window. Using tcfp, verify the
image obtained in step 1 parses correctly:
$ python3 tcfp.py parse image.bin

Figure 7 shows example output for various valid firmware images.

3. When verified successfully, use tcfp to patch the firmware image to over-
ride the host controller Security Level to “None” (SL0):
$ python3 tcfp.py patch image.bin

Figure 8 shows example output for a host controller originally configured
to employ the default Security Level “User” (SL1). Similarly, Figure 9
lists example output for a host controller initially configured to disable
Thunderbolt connectivity, that is, exclusively pass through DisplayPort
and USB (SL3).

4. Write the image to the victim system SPI flash.

Verification

1. Resume the victim system from sleep and connect the attacker device.
If the victim system employed SL1 or SL2, observe that Thunderbolt
security has been disabled. If the victim system employed SL3, notice
that Thunderbolt connectivity has been restored and its security has been
disabled. In both cases, observe that the victim system enables PCIe
tunneling as a result.

2. Optionally, in UEFI, verify that the indicated Security Level does not
reflect the actual Security Level state, that is, “None” (SL0).

If the victim system is using Windows, verify the actual state is listed
under the “About” section of the Thunderbolt Software device authoriza-
tion UI. Similarly, on Linux, verify the actual state is listed when invoking
tbtadm.

3.3 Exploitation scenarios for vulnerability 6

3.3.1 Soft-block method: Rendering Security Level “None” (SL0)
permanent and blocking future firmware updates

Threat model

We assume an “evil maid” threat model, in which the attacker exclusively has
access to the victim system. More specifically, the attacker is not in possession
of any victim devices. Furthermore, we assume the system is in a sleep state

12



(S3), while the Thunderbolt controller is set to employ either the Security Level
“User”, “Secure” or “No PCIe tunneling”.

Procedure

1. Execute procedure 3.2.1 to override the victim system’s Security Level to
“None” (SL0).

2. On the attacker system, open a terminal window. Using SPIblock, probe
for the flash device:
$ python3 spiblock.py -p

Figure 10 shows example output for various flash devices.

3. Using SPIblock, observe Status Register returns a clean state (0x00),
implying block protection is disabled:
$ python3 spiblock.py -s

Figure 10 shows example output for various flash devices.

4. When device connection and state have been verified successfully, enable
on-flash block protection BPx:
$ python3 spiblock.py -b 1

5. Observe block protection BPx has been enabled:
$ python3 spiblock.py -s

Figure 11 shows example output for a Winbond W25Q80.V.

Verification

1. On the victim system, in UEFI, modify the host controller Security Level
to any value other than “None” (SL0).

2. Reboot to UEFI, and verify the host controller Security Level is set to the
desired value.

3. Continue booting to the OS, and connect the attacker device. Observe
that the host controller Security Level has not been set to the chosen
value from step 1. Instead, observe the actual state is “None” (SL0), and
that the victim system enables PCIe tunneling as a result.

4. From the victim system’s vendor website, obtain a Thunderbolt host con-
troller firmware update.

5. If the victim system is using Windows, record the current “NVM version”
listed under the “About” section of the Thunderbolt Software device au-
thorization UI.
If the victim system is using Linux, record the current “NVM version”

13



using:
# cat /sys/bus/thunderbolt/devices/0-0/nvm version

6. Install the Thunderbolt host controller firmware update obtained in step
4.

7. Observe the former utility reports the Thunderbolt firmware update was
updated successfully. For reference, an Intel whitepaper [5] shows example
output for Thunderbolt 3-equipped NUC systems.

8. If the victim system is using Windows, open the “About” section of the
Thunderbolt Software device authorization UI. Notice that the “NVM
version” remains unchanged.
Similarly, on Linux, notice the value returned by nvm version has not
changed.

3.3.2 Hard-block method: Rendering Security Level “None” (SL0)
permanent and blocking future firmware updates

Threat model

We assume an “evil maid” threat model, in which the attacker exclusively has
access to the victim system. More specifically, the attacker is not in possession
of any victim devices. Furthermore, we assume the system is in a sleep state
(S3), while the Thunderbolt controller is set to employ either the Security Level
“User”, “Secure” or “No PCIe tunneling”.

Procedure

1. Execute procedure 3.3.1 to override the victim system’s Security Level to
“None” (SL0) and enable block protection.

2. On the attacker system, using SPIblock, enable WP pin control:
$ python3 spiblock.py -w 1

3. Observe Status Register Protect SRP0 has been enabled:
$ python3 spiblock.py -s

Figure 12 shows example output for a Winbond W25Q80.V.

4. On the SPI flash device, solder a wire from the GND pin to the WP pin.

Verification

1. Proceed executing the verification steps from procedure 3.3.1 to observe
the same results.

2. On the attacker system, using SPIblock, observe neither block protection
nor WP pin control can be disabled. Figure 12 shows example output for
a Winbond W25Q80.V.

14



3.3.3 One Time Program method: Rendering Security Level “None”
(SL0) permanent and blocking future firmware updates

Threat model

We assume an “evil maid” threat model, in which the attacker exclusively has
access to the victim system. More specifically, the attacker is not in possession
of any victim devices. Furthermore, we assume the system is in a sleep state
(S3), while the Thunderbolt controller is set to employ either the Security Level
“User”, “Secure” or “No PCIe tunneling”.

In addition, we assume the victim system’s host controller SPI flash supports
One Time Program (OTP) write protection or similar technologies3. Once en-
abled, this feature programs the SPI flash device to an irrevocable read-only
state.

Procedure

1. Execute procedure 3.3.1 to override the victim system’s Security Level to
“None” (SL0) and enable block protection.

2. Obtain the SPI flash datasheet from the vendor website.

3. On the attacker system, follow the instructions from the datasheet to
enable OTP write protection. For example, for Winbond W25Q80.V [13],
perform the following procedure:

(a) Assert Write Enable Latch (WEL).

(b) Write the value 1 to Status Register Protect 0 and 1 (SRP0, SRP1).

(c) Disable Write Enable Latch (WEL).

Verification

1. Proceed executing the verification steps from procedure 3.3.1 to observe
the same results.

2. On the attacker system, using SPIblock, observe neither block protection
nor WP pin control can be disabled.

3In our study, we have found various recent and legacy Thunderbolt 3 implementations
use a variant of Winbond W25Q80.V, which supports OTP write protection [13].

15



3.4 Exploitation scenarios for vulnerabilities 2-3, 7 on Ap-
ple Mac systems

3.4.1 Cloning an Apple-whitelisted device identity to an attacker
device (MacOS) 4

Threat model

We assume an “evil maid” threat model, in which the attacker exclusively has
physical access to a victim system. The system is in a locked (S0) or sleep (S3)
state, while running MacOS.

Preparation

1. Acquire a MacOS-certified Thunderbolt device.

2. Disassemble the MacOS-certified device enclosure. Obtain the firmware
image from the Thunderbolt controller’s SPI flash of the MacOS-certified
device.

3. Disassemble the attacker device enclosure. Obtain the firmware image
from the Thunderbolt controller’s SPI flash of the attacker device.

4. Connect the MacOS-certified device to the attacker system. On the at-
tacker system, using e.g. tbtadm on Linux, obtain the UUID of the
MacOS-certified device.

5. Locate the DROM section by searching for the string DROM in the attacker
device firmware image. Figure 6 depicts the DROM data structure. Using
the figure as a reference, locate the appropriate offsets and replicate the
MacOS-certified device UUID.

6. Compute uid crc8 and replicate the value at the appropriate offset.

7. Write the image to the attacker device SPI flash.

Procedure

1. Connect the attacker device to the victim system.

Verification

1. Observe that the victim system identifies the attacker device as being
a MacOS-certified device. Figure 2 demonstrates an example scenario,
showing a forged Thunderbolt device identity in the MacOS “System In-
formation” application.

4This exploitation scenario is exclusively provided to demonstrate that, on MacOS, vul-
nerabilities 2–3 (i) bypass Thunderbolt device whitelist protection as detailed in Section 2.2.1,
(ii) fully compromise authenticity of Thunderbolt device metadata in MacOS “System Infor-
mation”, and (iii) prevents impact on victim system security via DMA, but enables attacks
similar to BadUSB [10].

16



3.4.2 Connecting an attacker device to DMA attack Apple Mac sys-
tems (Windows, Linux)

Threat model

We assume an “evil maid” threat model, in which the attacker exclusively has
physical access to a victim system. The system is in a locked (S0) or sleep state
(S3), while running Windows or Linux.

Procedure

1. Connect the attacker device to the victim system. Observe that the system
does not provide any Thunderbolt security, and enables PCIe tunneling
as a result.

Verification

1. If the victim system is using Windows, open the “About” section of the
Thunderbolt Software device authorization UI. Notice that the Thunder-
bolt controller is set to employ Security Level “None” (SL0).
Similarly, on Linux, notice the Security Level returned by tbtadm topology
states “None” (SL0).

References

[1] Apple. Debugging VT-d I/O MMU Virtualization – Thunderbolt Device
Drivers, 2013. URL https://developer.apple.com/library/archive/
documentation/HardwareDrivers/Conceptual/ThunderboltDevGuide/
DebuggingThunderboltDrivers/DebuggingThunderboltDrivers.html#
//apple_ref/doc/uid/TP40011138-CH6-SW2.

[2] Apple. Boot Camp - Official Apple Support, 2020. URL https://support.
apple.com/boot-camp.

[3] Ulf Frisk. Rise of the Machines: Direct Memory At-
tack the Kernel – DefCon 24. URL https://raw.
githubusercontent.com/ufrisk/presentations/master/
DEFCON-24-Ulf-Frisk-Direct-Memory-Attack-the-Kernel-Final.
pdf.

[4] Intel Corporation. Thunderbolt 3 and Security on Microsoft
Windows 10 Operating System, September 2018. URL https:
//thunderbolttechnology.net/security/Thunderbolt%203%20and%
20Security.pdf. Whitepaper.

[5] Intel Corporation. Thunderbolt 3 Firmware Update Guide, July
2019. URL https://www.intel.com/content/dam/support/us/en/
documents/mini-pcs/Thunderbolt-FW-Update-Guide.pdf. Whitepaper.

17



[6] Carsten Maartmann-Moe. Inception, 2014. URL https://github.com/
carmaa/inception. GitHub repository.

[7] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce,
Peter G. Neumann, Simon W. Moore, and Robert N. M. Watson. Thun-
derclap: Exploring vulnerabilities in operating system IOMMU protection
via DMA from untrustworthy peripherals. In 26th Annual Network and
Distributed System Security Symposium, NDSS 2019, San Diego, Califor-
nia, USA, February 24-27, 2019, 2019. URL http://thunderclap.io/
thunderclap-paper-ndss2019.pdf.

[8] Microsoft. Kernel DMA Protection for Thunderbolt 3, 2019.
URL https://docs.microsoft.com/en-us/windows/security/
information-protection/kernel-dma-protection-for-thunderbolt.
Technical report documenting Windows 10 Kernel DMA Protection
support for recently released systems.

[9] Andreas Noever. thunderbolt: Add initial cactus ridge NHI sup-
port, June 2014. URL https://github.com/torvalds/linux/commit/
16603153666d22df544ae9f9b3764fd18da28eeb. Linux kernel patch
adding initial Thunderbolt support.

[10] SRLabs. BadUSB - On accessories that turn evil, July
2014. URL https://srlabs.de/wp-content/uploads/2014/11/
SRLabs-BadUSB-Pacsec-v2.pdf. PacSec.

[11] Mika Westerberg. Thunderbolt security levels and NVM firmware upgrade,
June 2017. URL https://lwn.net/Articles/724465/. Details on initial
Linux Thunderbolt security levels support.

[12] Mika Westerberg and Greg Kroah-Hartman. thunderbolt:
Add support for Internal Connection Manager (ICM), June
2017. URL https://github.com/torvalds/linux/commit/
f67cf491175a315ca86c9b349708bfed7b1f40c1. Linux kernel patch
adding Thunderbolt security levels support.

[13] Winbond. W25Q80DV-DL 2.5V and 3V 8M-bit Serial Flash Memory with
Dual and Quad SPI, October 2015. URL https://www.winbond.com/
resource-files/w25q80dv%20dl_revh_10022015.pdf. Datasheet.

18

http://thunderclap.io/thunderclap-paper-ndss2019.pdf
http://thunderclap.io/thunderclap-paper-ndss2019.pdf


Appendix: Exploitation scenarios

This appendix demonstrates some of the exploitation scenarios, as outlined in
Section 3.

Figure 3: An attacker-controlled device spoofing the identity of a victim device
on Linux.

Figure 4: An attacker-controlled device cloning the identity of a victim device
on Windows.

19



Figure 5: Spoofing a victim device while employing the “Secure” Security Level.

Figure 6: Device ROM data structure.

20



Figure 7: Parsing Thunderbolt 3 host controller firmware images.

Figure 8: Altering firmware image to patch Security Level configuration from
“User” (SL1) to “None” (SL0).

21



Figure 9: Altering firmware image to patch Security Level configuration from
“No PCIe tunneling” (SL3) to “None” (SL0).

Figure 10: Verifying SPI flash connection and state.

22



Figure 11: Enabling on-flash block protection.

Figure 12: Enabling on-flash block protection and WP pin control.

23


